Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione

نویسندگان

  • Hesti Lina Wiraswati
  • Emilie Hangen
  • Ana Belén Sanz
  • Ngoc-Vy Lam
  • Camille Reinhardt
  • Allan Sauvat
  • Ariane Mogha
  • Alberto Ortiz
  • Guido Kroemer
  • Nazanine Modjtahedi
چکیده

Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquinone; also called vitamin K3) in conditions in which this pro-oxidant does not cause the mitochondrial release of AIF, yet causes caspase-independent cell killing. Depletion of AIF from human cancer cells reduced the cytotoxicity of menadione. This cytoprotective effect was accompanied by the maintenance of high levels of reduced glutathione (GSH), which are normally depleted by menadione. In addition, AIF depletion reduced the arylation of cellular proteins induced by menadione. This menadione-triggered arylation, which can be measured by a fluorescence assay, is completely suppressed by addition of exogenous glutathione or N-acetyl cysteine. Complex I inhibition by Rotenone did not mimic the cytoprotective action of AIF depletion. Altogether, these results are compatible with the hypothesis that mitochondrion-sessile AIF facilitates lethal redox cycling of menadione, thereby precipitating protein arylation and glutathione depletion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of cytoplasmic stress granules by apoptosis-inducing factor.

Stress granules (SG) are dynamic cytoplasmic foci in which stalled translation initiation complexes accumulate. In conditions of acute cellular redox, stress cells manipulated to lose the expression of apoptosis-inducing factor (AIF) nucleate SG signature proteins (e.g. TIA-1, PABP1) more efficiently than AIF-positive controls. AIF also inhibited SG formation induced by the RasGAP-associated en...

متن کامل

Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress.

Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-induci...

متن کامل

Glabridin triggers over-expression of apoptosis inducing factor (AIF) gene in Candida albicans

Background and Purpose: Candida albicans is a prevalent human fungal pathogen that can cause a wide spectrum of diseases, from superficial mucosal infections to systemic disorders, in patients with impaired immunity. Glabridin is a pyranoisoflavan originally extracted from root extract of Glycyrrhiza glabra. Glabridin can also mediate apoptosis in yeast cells by changing the mitochondrial membr...

متن کامل

Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms.

Mitochondria release proteins that propagate both caspase-dependent and caspase-independent cell death pathways. AIF (apoptosis-inducing factor) is an important caspase-independent death regulator in multiple neuronal injury pathways. Presently, there is considerable controversy as to whether AIF is neuroprotective or proapoptotic in neuronal injury, such as oxidative stress or excitotoxicity. ...

متن کامل

Alpha-Tocopheryl Succinate Inhibits Autophagic Survival of Prostate Cancer Cells Induced by Vitamin K3 and Ascorbate to Trigger Cell Death

BACKGROUND The redox-silent vitamin E analog α-tocopheryl succinate (α-TOS) was found to synergistically cooperate with vitamin K3 (VK3) plus ascorbic acid (AA) in the induction of cancer cell-selective apoptosis via a caspase-independent pathway. Here we investigated the molecular mechanism(s) underlying cell death induced in prostate cancer cells by α-TOS, VK3 and AA, and the potential use of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016